JOM 23239PC

Preliminary Communication

Molekülstruktur von Tetracarbonylbis(η^5 -cyclopentadienyl)- μ - $\eta^{1:2}$ vinyliden-dimolybdän

Ulrich Kern, Cornelius G. Kreiter, Stefan Müller-Becker und Walter Frank

Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Straße, W-6750 Kaiserslautern (Deutschland)

(Eingegangen den 14. September 1992)

Abstract

Photoreaction of $[Mo_2(\eta^5-C_5H_5)_2(\mu-\eta^{2:2}-C_2H_2)(CO)_4]$ (1) with E-2-butene yields the vinylidene complex $[Mo_2(\eta^5-C_5H_5)_2(\mu-\eta^{1:2}-C=CH_2)(CO)_4]$ (2) as a minor by-product. The crystal and molecular structure of 2 was determined by an X-ray diffraction study. The two metal centers are connected by a Mo-Mo single bond and bridged by the $\mu-\eta^{1:2}$ -vinylidene ligand.

1. Einführung

Bei der Photoreaktion von $[Mo_2(\eta^5 - C_5H_5)_2(\mu - \eta^{2:2} - C_2H_2)(CO)_4]$ (1) mit Mono-Olefinen fällt bei Verwendung von E-2-Buten als Nebenprodukt in geringer Ausbeute der tautomere Vinyliden-Komplex $[Mo_2(\eta^5 - C_5H_5)_2(\mu - \eta^{1:2} - C = CH_2)(CO)_4]$ (2) an [1]. Die photochemische Umwandlung von 1 in 2 ist durch direkte 1,2-H-Verschiebung oder über einen Hydrido- $\mu - \eta^{1:2}$ acetylenyl-Komplex als Zwischenstufe denkbar.

Sowohl Komplex 2 als auch dic analoge Verbindung $[Mo_2{\eta^5-C_5(CH_3)_5}_2(\mu-\eta^{1:2}-C=CH_2)(CO)_4]$ entstehen bei der UV-Bestrahlung von $[Mo_2(\eta^5-C_5H_5)_2(CO)_4]$ bzw. $[Mo_2{\eta^5-C_5(CH_3)_5}_2(CO)_4]$ in Gegenwart von Acetylen in guten Ausbeuten [2,3]. Die substituierten Derivate $[Mo_2(\eta^5-C_5H_5)_2(\mu-\eta^{1:2}-C=C(C_6H_5)R)(CO)_4]$ werden durch Protonierung (R = H) oder Alkylierung von Li $[Mo_2(\eta^5-C_5H_5)_2(\mu-\eta^{1:2}-C=CC_6H_5)(CO)_4]$ mit CF₃SO₃CH₃ in CH₂Cl₂ bzw. THF (R = CH₃, C₄H₈OCH₃) erhalten [4].

Ein und zweikernige Übergangsmetall-Komplexe mit Vinyliden-Liganden, die als 2-Elektronen-Donatoren fungieren, sind seit längerem bekannt [5]. Dagegen wurden μ - $\eta^{1:2}$ -Vinyliden-Komplexe erst vor wenigen Jahren entdeckt und ihre Zahl ist bislang klein geblieben [2-4,6-8]. Strukturell sind der substituierte Vinyliden-Komplex $[Mo_2(\eta^5-C_5H_5)_2(\mu-\eta^{1:2}-C=C-(C_6H_5)C_4H_8OCH_3)(CO)_4]$ [4] und der verwandte Allenyliden-Komplex $[Mo_2(\eta^5-C_5H_5)_2(\mu-\eta^{1:2}-C=C-(CH_3)_2)(CO)_4]$ charakterisiert [6]. Die Struktur von $[Mo_2\{\eta^5-C_5(CH_3)_5\}_2(\mu-\eta^{1:2}-C=CH_2)(CO)_4]$ konnte hingegen aufgrund von Fehlordnungen nicht bestimmt werden [3]. Da strukturelle Besonderheiten an $[Mo_2-(\eta^5-C_5H_5)_2(\mu-\eta^{1:2}-C=C(C_6H_5)C_4H_8OCH_3)(CO)_4]$ mit Substituenteneffekten erklärt wurden, schien es reizvoll, die genauen Strukturdaten von 2 zu ermitteln, für das solche Effekte nicht zu erwarten sind.

Das ¹H-NMR-Spektrum von 2 in Methylenchlorid- d_2 ist praktisch identisch mit dem in Chloroform-d [2]. Es zeigt bei 243 K zwei Singuletts bei δ 5.45 und 5.29 ppm sowie ein AB-System bei 3.44 und 2.83 ppm mit einer Kopplungskonstanten von 14.2 Hz. Aufgrund der relativen Intensitäten 5:5:1:1 sind erstere den beiden Cyclopentadienyl-Ringen, letztere den beiden Methylen-Protonen des μ - $\eta^{1:2}$ -Vinyliden-Liganden zuzuordnen. Die große geminale Kopplungskonstante ist mit einer sp²-Methylengruppe nicht vereinbar und spricht eher für eine sp³-Hybridisierung des Methylen-C-Atoms.

2. Kristall- und Molekülstruktur von 2

Tetracarbonyl-bis(η^5 -cyclopentadienyl)- μ - $\eta^{1:2}$ -vinyliden-dimolybdän (2) kristallisiert triklin in der Raumgruppe $P\overline{1}$ (Nr. 2). Naturgemäß besitzt das Molekül Strukturelemente der Stammverbindung [Mo₂(η^{5} - $C_5H_5_2(CO)_6$ [9], von der es sich formal durch Ersatz zweier cisoider Carbonyle durch den μ - $\eta^{1:2}$ -Vinyliden-Liganden ableitet. Die beiden n^5 -Cyclopentadienyl-Ringe stehen recht genau in trans-Stellung, was am Torsionswinkel M1-Mo1-Mo2-M2 mit 174° (M1, M2 sind die Schwerpunkte der n^5 -C₅H₅-Liganden) ersichtlich ist. Mit der Mo1-Mo2-Achse schließen die Normalen der η^5 -C₅H₅-Ringebenen (mittlere Standardabweichung (mSA): 1.4, 2.0 pm) Winkel von 136.9° bzw. 122.5° ein. Die mittleren Mo1-C-bzw. Mo2–C-Bindungslängen der η^5 -C₅H₅-Liganden betragen 235.6(15) und 231.6(18) pm, die Abstände der Schwerpunkte von den Metall-Atomen 203.0(16) pm (Mo1-M1) und 199.7(17) pm (Mo2-M2). Im

Correspondence to: Prof. C.G. Kreiter.

üblichen Bereich liegen die Mo-C-Bindungslängen (192-196 pm) der vier terminalen Carbonyl-Liganden (Mo-C-O 171.7(20)°-176.3(20)°). Wird neben den angularen Positionen des η^5 -C₅H₅- und der beiden CO-Liganden die Mitte der C1-C2-Bindung an Mo2 als Bezug gewählt, so weicht die Koordinationsfigur an Mo2 kaum von der in $[Mo_2(\eta^5-C_5H_5)_2(CO)_6]$ ab. Die Koordinationsfigur des η^5 -C₅H₅- und der beiden CO-Liganden sowie von C1 an Mo1 unterscheidet sich dagegen deutlich von dieser Anordnung. Mo1, Mo2, C1 und C2 liegen nahezu in einer Ebene mit einem Faltungswinkel entlang Mo2-C1 von 169.3°. Auch C4 und O4 können in diese Ebene einbezogen werden (mSA: 5.3 pm). Mit den η^5 -C₅H₅-Ringebenen schließt sie Diederwinkel von 50.5° und 40.7° ein.

Der Mo1-Mo2-Abstand von 310.3(7) pm entspricht einer Mo-Mo-Einfachbindung und ist etwas kürzer als in $[Mo_2(\eta^5-C_5H_5)_2(CO)_6]$ mit 323.5(1) pm [9]. Der kurze Mo1-C1-Abstand des Vinyliden-Liganden mit 184.2(14) pm ist mit einer Mo-C-Doppelbindung zu vereinbaren. Gleichermaßen ist der Abstand C1-C2 von 136.3(16) pm typisch für CC-Doppelbindungen. Die Mo2-C1- und Mo2-C2-Bindungslängen von 209.4(9) und 229.9(10) pm sind sowohl mit einer "sideon" Koordination des Vinyliden-Liganden an Mo2 als auch mit einer Dimetallabicyclo[1.1.0]buten-Struktur in

TABELLE 1. Lageparameter der Atome von $Mo_2(\eta^5-C_5H_5)_2(\mu-\eta^{1:2}-C=CH_2)(CO)_4]$ (2) mit äquivalenten Temperaturfaktoren (pm²·10⁴) nach Hamilton [12]

	x	у	z	B
Mo1	0.6873(1)	-0.0494(1)	0.22047(9)	5.19(7)
Mo2	0.6019(1)	0.2681(1)	0.30153(9)	5.15(7)
O3	0.297(1)	-0.045(1)	0.233(1)	8.8(9)
O4	0.530(1)	0.233(1)	0.0002(9)	8.6(9)
O5	0.884(2)	0.288(1)	0.123(1)	9.0(1)
O6	0.898(1)	0.316(1)	0.4360(8)	7.9(8)
C1	0.679(1)	0.019(1)	0.359(1)	5.4(7)
C2	0.709(2)	0.054(1)	0.463(1)	7.0(1)
C3	0.445(2)	-0.050(1)	0.224(1)	6.0(1)
C4	0.584(2)	0.133(1)	0.090(1)	7.0(1)
C5	0.780(2)	0.272(2)	0.185(2)	8.0(1)
C6	0.785(2)	0.296(1)	0.3891(9)	5.5(9)
C11	0.971(2)	- 0.158(2)	0.146(1)	7.0(1)
C12	0.995(1)	- 0.208(2)	0.268(1)	7.0(1)
C13	0.895(2)	-0.310(2)	0.302(1)	7.0(1)
C14	0.812(2)	-0.318(2)	0.198(2)	9.0(2)
C15	0.869(2)	-0.226(2)	0.103(1)	8.0(1)
C21	0.293(2)	0.364(2)	0.227(2)	9.0(1)
C22	0.365(2)	0.477(2)	0.183(1)	8.0(1)
C23	0.405(2)	0.527(2)	0.276(2)	9.0(2)
C24	0.369(2)	0.444(3)	0.381(2)	10.0(2)
C25	0.305(2)	0.338(2)	0.352(2)	9.0(1)
H1	0.6072(9)	0.0754(0)	0.5006(9)	5.53(0)
H2	0.8298(0)	0.0334(0)	0.5035(0)	5.53(0)

TABELLE 2. Ausgewählte Bindungslängen (pm) und -winkel (°) von $[Mo_2(\eta^5-C_5H_5)_2(\mu-\eta^{1:2}-C=CH_2)(CO)_4]$ (2)

Bindungslängen			
Mo1-Mo2	310.3(7)	Mo2-C6	192.7(19)
Mo1-C1	184.2(14)	Mo2-M2	1 99.7 (17)
Mo1-C3	194.8(20)	C1-C2	136.3(16)
Mo1-C4	191.6(10)	C3-O3	117.5(23)
Mo1-M1	203.0(16)	C4-O4	118.8(12)
Mo2-C1	209.4(9)	C5-O5	112.5(27)
Mo2-C2	229.9(10)	C6-O6	115.9(22)
Mo2-C5	195.6(21)		
Bindungswinkel			
M1-Mo1-Mo2	138.0(9)	Mo1-Mo2-C6	120.3(7)
M1-Mo1-C1	117.3(10)	M12-Mo2-C5	107.7(12)
M1-Mo1-C3	122.4(11)	M12-Mo2-C6	85.4(9)
M1-Mo1-C4	121.0(11)	C5-Mo2-C6	77.4(12)
Mo2-Mo1-C1	40.9(6)	Mo1-C1-Mo2	103.9(8)
Mo2-Mo1-C3	98.0(7)	Mo2-C1-C2	80.4(13)
Mo2-Mo1-C4	69.3(7)	C1-C2-Mo2	63.9(12)
C1-No1-C3	95.3(9)	C1-Mo2-C2	35.8(8)
C1-Mo1-C4	109.6(9)	H1-C2-H2	122.6(25)
C3-Mo1-C4	84.7(10)	Mo1-C1-C2	168.7(16)
M2-Mo2-Mo1	119.5(10)	Mo1-C3-O3	175.1(20)
M2-Mo2-M12	125.2(12)	Mo1-C4-O4	171.7(20)
M2-Mo2-C5	124.3(15)	Mo2-C2-H1	97.9(17)
M2-Mo2-C6	119.6(13)	Mo2-C2-H2	116.5(17)
Mo1-Mo2-M12	53.7(6)	Mo2-C5-O5	172.1(30)
Mo1-Mo2-C5	77.0(10)	Mo2-C6-O6	176.3(20)

Einklang. Die Struktur von $[Mo_2(\eta^5-C_5H_5)_2(CO)_4\{\mu-\eta^{1:2}-C=C(C_6H_5)(C_4H_8OCH_3)\}]$ [4] zeigt, wenn von den Substituenten abgesehen wird, weitgehende Übereinstimmung mit 2. Die geringfügige Faltung der von Mo1, Mo2, C1 und C2 aufgespannten Ebene ist offenbar für $\mu-\eta^{1:2}$ -Vinyliden-Komplexe typisch und wird nicht durch Substituenten-Effekte bewirkt.

Abb. 1. Molekülstruktur von $[Mo_2(\eta^5-C_5H_5)_2(\mu-\eta^{1:2}-C=CH_2)(CO)_4]$ (2).

U. Kern et al. / Tetracarbonyl-bis(η^{5} -cyclopentadienyl)- μ - $\eta^{1:2}$ -vinyliden-dimolybdän

3. Experimenteller Teil

Alle Arbeiten wurden unter katalytisch von Sauerstoff befreitem und getrocknetem (Molsieb) Stickstoff durchgeführt. Die Lösungsmittel waren mit Natrium/ Benzophenon bzw. Phosphorpentoxid absolutiert und stickstoffgesättigt. Zur Säulenchromatographie wurde neutrales, bei 423 K i. Vak. ausgeheiztes und mit 5% stickstoffgesättigtem Wasser desaktiviertes Aluminiumoxid benutzt. $[Mo_2(\eta^5-C_5H_5)_2(\mu-\eta^{2:2}-C_2H_2)(CO)_4]$ (1) wurde nach modifizierten Literaturvorschriften dargestellt [10,11].

3.1. Photoreaktion von μ - $\eta^{2:2}$ -Acetylen-tetracarbonylbis(η^{5} -cyclopentadienyl)dimolybdän (1) mit E-2-Buten

In eine Lösung von 1.6 g (3.5 mmol) [Mo₂(η^{5} - $C_5H_5_2(\mu-\eta^{2/2}-C_2H_2)(CO)_4$ (1) in 750 ml Ether/ THF-Gemisch (6,5:1) wird bei 253 K 10 Minuten lang E-2-Buten einkondensiert und über einen Zeitraum von 100 min photolysiert (700 W Hg-Tauchlampe TQ 718, Quarzlampen GmbH, Hanau). Während der Reaktion wird zur Durchmischung ein starker Stickstoffstrom durch die Lösung geleitet. Nach Entfernen des Lösungsmittels wird der Reaktionsrückstand in 7 ml Toluol aufgenommen und an Aluminiumoxid bei 253 K chromatographiert. Neben weiteren Verbindungen [1] kann mit n-Pentan/Ether 3:1 eine Zone eluiert werden, die nach Umkristallisieren 15 mg (Ausb. 1%) bez. auf 1) violette Kristalle von Tetracarbonyl-bis(η^5 cyclopentadienyl)- μ - $\eta^{1:2}$ -vinyliden-dimolybdän (2) liefert.

3.2. Röntgenstrukturanalyse von Tetracarbonyl-bis(η^5 -cyclopentadienyl)- μ - $\eta^{1:2}$ -vinyliden-dimolybdän (2)

Mo₂C₁₆H₁₂O₄ (2) kristallisiert triklin in der Raumgruppe PI (Nr. 2) mit den Zellkonstanten a 803.0(5), b 925.5(13), c 1159.4(16) pm, α 77.34(11)°, β 89.07(8)°, γ 67.38(9)°, V = 0.774 nm³, Z = 2. Die Röntgenbeugungsdaten wurden an einem Kristall von $0.2 \times 0.3 \times$ 0.05 mm³ an einem CAD 4-Vierkreis-Diffraktometer (Enraf-Nonius) im ω - θ -Scan-Betrieb bei 293 K unter Verwendung von Mo-K α Strahlung mit Beugungswinkeln im Bereich 2° $\leq 2\theta \leq 50^{\circ}$ gesammelt. Nach der Datenreduktion resultieren aus den 2870 gemessenen Reflexen 2319 unabhängige Reflexe mit I > 0. Die Struktur wurde mit direkten Methoden und Differenz-Fourier-Synthesen gelöst und unter Verwendung von anisotropen Temperaturfaktoren für Mo, O, und C zu R = 0.0625, $R_w = 0.0539$ verfeinert. In den letzten Verfeinerungscyclen wurden die über einer ΔF -Synthese lokalisierten Positionen der Atome H1 und H2 sowie die berechneten Positionen der übrigen H-Atome mit einem festen Beitrag in die F_c -Berechnung einbezogen. Die verhältnismäßig großen Standardabweichungen der Ortskoordinaten und die hohen R-Werte sind auf Verwachsungen des eingesetzten Kristalls zurückzuführen, die unsystematisch einen Teil der Reflexintensitäten verfälschen. Verwendete Programme: SHELX-76, SCHAKAL, MOLEN, XANADU.

Weitere Einzelheiten zur Kristallstrukturbestimmung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56768, der Autoren und des Zeitschriftenzitates angefordert werden.

Dank

Für die Unterstützung unserer Arbeit danken wir der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie.

Literatur

- 1 U. Kern, Dissertation, Universität Kaiserslautern, 1992.
- 2 G. C. Conole, S. F. T. Froom, M. Green und M. McPartlin, J. Chem. Soc., Chem. Commun., (1989) 92.
- 3 N. M. Doherty, C. Elschenbroich, H.-J. Kneuper und S. A. R. Knox, J. Chem. Soc., Chem. Commun., (1985) 170.
- 4 R. J. Mercer, M. Green und A. G. Orpen, J. Chem. Soc., Chem. Commun., (1986) 567.
- 5 M. I. Bruce und A. G. Swincer, Adv. Organomet. Chem., 22 (1983) 59.
- 6 S. F. T. Froom, M. Green, R. J. Mercer, K. R. Nagle, A. G. Orpen und S. Schwiegk, J. Chem. Soc., Chem. Commun., (1986) 1666.
- 7 M. J. Winter, Adv. Organomet. Chem., 29 (1989) 101.
- 8 C. G. Kreiter, A. Würtz und P. Bell, Chem. Ber., 125 (1992) 377.
- 9 R. D. Adams, D. M. Colins und F. A. Cotton, Inorg. Chem., 13 (1974) 1086.
- 10 R. J. Klingler, W. Butler und M. D. Curtis, J. Am. Chem. Soc., 97 (1975) 3535.
- 11 D. S. Ginley, C. R. Bock und M. S. Wrighton, *Inorg. Chim. Acta*, 23 (1977) 85.
- 12 W. C. Hamilton, Acta Crystallogr., 12 (1959) 609.